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The high pressure isothermal compressibilities of deuterium oxide from 5 to l00·C and 0 to 1000 
bars applied or gauge pressure were determined from sound speed data. These compressibilities were 
used to derive an equation of state of the form yOp I(Yo - y P) = B + AlP + A 2P2, where 
y O and Y P are the specific volumes at an applied pressure of zero and P; and B, A I> and A 2 are 
polynomial functions of temperature. The compressibilities derived from this equation of state are 
consistent with those derived from the sound speed data to ±0.016 x 10- 6 bar- lover the entire 
pressure and temperature range (this is equivalent to -0.2 m sec- I in sound speed). The 1 atm 
sound-derived compressibilities agree on the average to ±O.06 x 10- 6 bar- I with the direct 
measurements of Millero and Lepple. The P - Y - T data from the sound-derived equation are 
compared with the high pressure work of Bridgman, Kesselman, Juza et al. , and Emmet and 
Millero. Good agreement (average deviation of ±28 X 10- 6 cm3 g- I) was found with the recent 
specific volume measurements of Emmet and Millero. The P - Y - T properties of 0 20 are compared 
to pure water. 0 20 and H20 are shown to follow similar trends. Contrary to previous reports, the 
D 20IH20 ratios of the specific volumes and specific heats are shown to be functions of both 
temperature and pressure. 

I. INTRODUCTION 

Recently, using the computer technique developed by 
Wang and Millero, 1 we derived equations of state for 
pure waterZ and seawater. l,S The same technique was 
used to derive an equation of state and the resulting 
P- V-T properties for a solution of 99.82 % deuterium 
oxide (DzO). Since Mathieson and Conway· demonstrated 
that the change in sound speed with atomic fraction of 
DzO is nearly linear in mole fraction, the results pre
sented in this paper can easily be applied to any DzO-HzO 
mixture. Several investigators examined the V- T prop
erties of DzO at 1 atm.5- 16 However, at pressures 
greater than 1 atm, few17-20 examined either the P- V- T 
properties or the similarity of these properties to those 
of pure water. 

There is both a practical and a theoretical significance 
for studying the similarities of the P- V- T properties 
of water (HzO is used to denote normal water) and DzO. 
On the practical Side, the properties of DzO can be esti
mated from HzO on the basis of Similarity. Comparison 
of the P-V- T properties of DzO and HzO is a method 
that is of use when studying the structural properties 
of water. 21-24 The most striking difference between 
DzO and HzO is the relationship to life processes. While 
HzO is necessary for life, DzO is poisonous to all but 
the lowest forms. Z5 On the theoretical Side, the results 
of most studiesz1 - z• indicated that at the same tempera
ture, DzO solutions are more structured than HzO solu
tions. However, Nemathy and ScheragaZ3 showed that 
the breakdown of this structural order, with an increase 
in temperature, was more rapid for DzO than HzO. 

Since the excellent consistency of the high pressure 
sound data of Wilsonz6,z7 was proven, z we consider our 
sound-derived equation of state for DzO to be more 
reliable than any of the previous DzO work. This work 
generally applies to both 100% DzO and a DzO-HzO solu
tion. Where specific numbers are used, an effort is 
made to identify the particular solution. In Sec. II we 
review the derivation of our equation, in Sec. III we 
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compare our results to previous DzO work, and in Sec. 
IV we examine our results relative to HzO. 

II. EQUATION OF STATE 

An equation of state for DzO was derived directly from 
the velOCity of sound c. The following thermodynamic 
relationship was used: 

=.::...!.(avP) = vP 
+ TazV

P 
f3 v P ap T C Z Cp ' 

(1) 

in which f3 is the isothermal compressibility [f3= - l/VP 

x (8 vP/ap)T], yP is the specific volume at pressure P, 
T is the absolute temperature, C P is the heat capacity 
at constant pressure, and a is the expansibility [a = l/VP 

x (ayP/8T)p]. 

Equation (1) was evaluated using an iterative computer 
technique developed by Wang and Millero. 1 To effect 
this technique for DzO, the following data were used: 
the 1 atm densities of Kellz8 (estimated error of this 
equation is ±3 x 10-6gcm-S, estimated accuracy is 
± lO X 10-6 g cmoS); the 1 atm heat capacities of Eucken 
and Eigen1Z; and the velocity of sound data of Wilson. 29 

Eucken and Eigen1Z measured the heat capacity at 1 
atm of 100% DzO from 20 to 130°C. The error involved 
in using 100% DzO heat capacity data in Eq. (1) is at 
least two orders of magnitude less than the claimed 
accuracy of Eucken and Eigen. Their claimed accuracy 
was 0.06 Jg-1 • deg-1

, which introduces an error of less 
than 0.005 X 10-6 bar~ in compressibility. 

The heat capacity data1Z below 60°C were fitted to an 
equation and extrapolated down to get values for the 
range 5-20o C. Since the heat capacity is such a minor 
contributor to the compressibility, extrapolation of the 
data 'to the lower temperatures where there are no data 
points of Eucken and Eigen is justified. This extrap
olated data was then fitted, along with the data of Eucken 
and Eigen from 20 to 100°C, to the following equation: 
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TABLE I. A comparison of the velocity of sound data (m sec-i) 
of Wilson29 and MUlero et al . 30 at 1 atm for 99.82% D 2O. 

c (MiHero C:.c (Wilson-
t("C) c (Wilson) et al.) MiHero et al. ) 

4 1320.90 1320.67 0.23 
10 1347.49 1347.32 0.17 
15 1366.96 1366.75 0.21 
20 1384.17 1383.87 0.30 
25 1399.24 1398.86 0.38 
30 1412.33 1411.88 0.45 
35 1423.57 1423.09 0.48 
40 1433.09 1432.63 0.46 
45 1441. 01 1440.63 0.38 
50 1447.45 1447.20 0.25 
55 1452.52 1452.46 0.06 
60 1456.32 1456.49 -0.17 
65 1458.97 1459.38 -0.41 
70 1460.54 1461.18 -0.64 
75 1461.14 1461. 97 -0.83 
80 1460.83 1461. 78 -0.95 
85 1459.70 1460.64 -0.94 
90 1457.82 1458.57 -0.75' 

C;'=4. 2765 - 3. 87183 x l0-3 t+6. 6500 x l0-5 t 2 

-7.1819 x l0-7 t 3 +2. 973 x l0-9 t 4 
• (2) 

The maximum deviation of the data of Eucken and Eigen 
(20-100°C) from Eq. (2) is 0.0015 Jg-1 • deg-1• 

Wilson29 measured the velOCity of sound in 99. 82 % 
°20 from 4 to 98°C, and from 0 to -1000 bar. He re
ported a probable experimental error of ± O. 16 m sec-1. 
He fitted his data to a polynomial equation with a stan
dard error of ± 0.20 m sec-l. An error of ± O. 20 m sec-1 

in sound velocity will give an error of less than 0.016 
x 10-6 bar-1 in co~pressibility. This resultant small 
error in compressibility is what enables us to derive 
a precise equation of state from sound velocities. Al
though a number of workers10,1l,15 also measured the 
v'elocity of sound in D20 at 1 atm, their results are in 
poor agreement with the work of Wilson. This is ex
pected since these workers10,1l,15 determined the sound 
speeds to only ± 1 m sec-1. Recently, Millero et al. 30 

determined the velocity of sound in °20 relative to H20 
from 4 to 90°C with a preciSion of ± 0.05 m sec-1• A 
comparison of Wilson's29 sound velocities with those 
of Millero et al. 30 is shown in Table 1. This comparison 
shows that Wilson's sound velocities agree on the average 
to ±0.45 msec-1 (which is equivalent to -±0.03xlO-8 

bar-l in compressibility) with the more reliable work 
of Millero et al. 30 This good agree merit at 1 atm, in 
addition to the proven consistency2 of the high pressure 
sound data of Wilson, 26,27 substantiates our use of 
Wilson's29 sound velocities to derive an equation of 
state for °20. 

Our equation of state is of the form of a second degree 
secant bulk modulus1-': 

(3) 

where K is the secant bulk modulus (at 1 atm absolute 
pressure or P = 0 bar applied pressure, K = 1/ (:J); vP 

and VO are, respectively, the specific volumes at 

pressure P and 1 atm (0 bar); B, Ai> and A2 are poly
nomial functions of temperature (t in °C). The specific 
volume at 1 atm (P=O), VO (cm3 g-l), is taken from 
KeU28

: 

VO = (1 + 17.96190 x 10-3 t)/(1. 104690 + 20.09315 X 10-3 t 

- 9. 24227 x l0-6 t 2 
- 55.9509 X 10-9 t 3 +79.9512 

(3a) 

The coefficient B (in bar), which is the reciprocal of 
the 1 atm compressibility, is given by 

B = 1. 8607370 Xl04 + 1. 7026 x l02 t- 2.40556 t 2 

(3b) 

The pressure coefficients A1 and A2 are given by 

A1 = 3.129069 - 4. 53919 X 10-3 t+ 4.3252 X 10-4 t2 

- 4. 7659 X 10-6 t 3 + 1. 6244 X 10-8 t 4 (3c) 

A 2 = 1. 07903 x lO-4 _ 5. 5471 x 10-7 t -1. 6758xl0-7 t 2 

+ 2.384 X 10-9 t 3 - 9. 301 X 10-12 t 4 (3d) 

Figure 1 is a pictorial representation of the residuals 
or 'deviations (in bar-1) of the pressure derivative of the 
fitted equation (3) from the original sound data. We 
note that the residuals are apparently random: At zero 
bar, they are clustered around zero. From 100 to 400 
and, not as pronounced, from 600 to 700 bar, they are 
more heavily weighted on the negative Side, whereas at 
500 and 800 bar they appear to be more evenly distributed 
around zero. 

The choice of a second degree secant bulk modulus 
was discussed by Wang and Millero, 1 Fine and Millero, 2 
and Fine, Wang, and Millero. 3 When deriving the P-
V - T properties, Eq. (3) is convenient to use. Equation 
(3) can be rearranged to give the specifiC volume (in 
cm3 g-1): 
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FIG. 1. The residuals between compressibilities from Eq. (2) 
and the sound derived data for each pressure. 
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